US 20060284878A1

a2y Patent Application Publication o) Pub. No.: US 2006/0284878 A1

a9y United States

Zimmer

43) Pub. Date: Dec. 21, 2006

(54) RESOLUTION INDEPENDENT USER
INTERFACE DESIGN

(75) Inventor: Mark Zimmer, Aptos, CA (US)

Correspondence Address:

WONG, CABELLO, LUTSCH, RUTHERFORD

& BRUCCULERI LLP

20333 SH 249

SUITE 600

HOUSTON, TX 77070 (US)

(73) Assignee: APPLE COMPUTER, INC., Cupertino,
CA (US)

(21) Appl. No.: 11/459,140

(22) Filed: Jul. 21, 2006

Related U.S. Application Data

(63) Continuation-in-part of application No. 10/876,298,
filed on Jun. 24, 2004.

Publication Classification

(51) Int. CL

G09G 5/00 (2006.01)

GOG6F 3/00 (2006.01)
(52) US.Cl oo 345/581; 715/762
(57) ABSTRACT

Graphical user interface material map objects are specified
by a collection of attribute-value pairs, the collection of
which comprises a complete description of the material map
and may be used by a rendering engine to create a visual
representation of the material map at any resolution. That is,
material map representations in accordance with the inven-
tion are resolution independent. Another benefit of repre-
senting material maps in accordance with the invention is
that they may be encrypted to prevent unauthorized inspec-
tion or use.

Buttor Materal

605

610

Brightress

620

Patent Application Publication Dec. 21,2006 Sheet 1 of 10 US 2006/0284878 A1

100
é‘ [--——————=——=——=--=- [
! APPLICATION 120 !
I I
DESIGNER cul | :
os [#—>| APPLICATION L5 RECIPE i
110 ! 15 |
: |
1 |
|
FIG. 1 S ;
200
\i OBJECT TYPE 205
|
| | |
REGULAR 210 SMALL 215 MINI 220

COLOR-A COLOR-Z COLOR-B COLOR-Y COLOR-C COLOR-X

FIG. 2

300

§ RECIPE

115

USER ~ ~
305 > g
APPLICATION RENDERING
120 ENGINE
310
DISPLAY
320 |[° ~

BITMAP
319 FIG. 3

US 2006/0284878 A1l

Patent Application Publication Dec. 21,2006 Sheet 2 of 10

US 2006/0284878 A1l

Patent Application Publication Dec. 21,2006 Sheet 3 of 10

. 5A

FIG

Patent Application Publication Dec. 21,2006 Sheet 4 of 10 US 2006/0284878 A1

US 2006/0284878 A1l

Patent Application Publication Dec. 21,2006 Sheet 5 of 10

US 2006/0284878 A1l

2006 Sheet 6 of 10

9

Deec. 21

ion

icat

Publ

ion

t

ica

Patent Appl

. 5G

FIG

US 2006/0284878 A1l

2006 Sheet 7 of 10

9

Deec. 21

ion

icat

Publ

ion

t

ica

Patent Appl

51

FiG

.50

R IR RN

BB BB GBS D

V9 'Old <09

US 2006/0284878 A1l

GT19

019 ..

009

Patent Application Publication Dec. 21,2006 Sheet 8 of 10

Patent Application Publication Dec. 21,2006 Sheet 9 of 10

e

A

IS N
B I A R N R

FIG. 6C

%

US 2006/0284878 A1l

TR

ETITNY

4. 'Old

B

US 2006/0284878 A1l

V. 'Old 50/

STZ

012

004

Patent Application Publication Dec. 21,2006 Sheet 10 of 10

US 2006/0284878 Al

RESOLUTION INDEPENDENT USER INTERFACE
DESIGN

RELATED APPLICATION

[0001] This application is a continuation-in-part of, and
claims priority to, U.S. patent application Ser. No. 10/876,
298, entitled “User-Interface Design,” filed 24 Jun. 2004 and
which is hereby incorporated by reference.

BACKGROUND

[0002] The invention relates generally to graphical user
interface design and more particularly to a means for speci-
fying a graphical user interface object in a procedural and
largely display resolution independent manner.

[0003] Designing an efficient, ergonomic and aesthetically
pleasing user interface is an integral stage of most applica-
tion development projects. The graphical user interface
(“GUI”) is what the user sees and interacts with. Accord-
ingly, the GUI must present information and choices to a
user in a way that is not only pleasing and natural to the eye
but conducive to efficient use of the underlying application.
One major concern in the development of modern GUIs is
the resolution of the various objects that comprise the GUI.
Typically, a designer designs a graphical user interface
object (e.g., a pushbutton, scrollbar, or slider) for a specified
resolution. As the resolution of the user’s display changes,
however, display of the originally designed object may
become distorted. This is particularly a problem when a
graphical object is designed at a first resolution (e.g., 75 or
100 pixels per inch) and the user’s display is at a second,
higher resolution (e.g., 120 or 150 pixels per inch).

[0004] In the past, two general techniques have been used
to address the problem associated with displaying objects
designed for a first resolution but which are displayed at a
second resolution. In the first, an original (low resolution)
object is up-sampled to generate a larger image (e.g.,
through linear or bicubic interpolation). This technique
results in blurry edges such that the user interface no longer
looks crisp. In the second, an original object is designed for
display at a high resolution and is then down-sampled to an
unknown target resolution. While useful in some circum-
stances, it is not possible a priori to know what width to give
a line (e.g., an object’s edge) at the higher resolution such
that when down-sampled it remains crisp. This is particu-
larly true when there are multiple target resolutions. Thus,
both up-sampling and down-sampling techniques tend to
disturb the designer’s specified line width. One of ordinary
skill in the art will recognize that line width is a critical
factor in GUI design as the width of lines define the edge of
graphical objects. If edges appear blurry or ill-defined, the
entire GUI design may be compromised.

[0005] Thus, it would be beneficial to provide a means to
specify the design of a graphical user interface object
independent of its display resolution. Such a description
may advantageously be used by a rendering module to
display the designed object at substantially any resolution.

SUMMARY

[0006] In one embodiment, the invention provides a
method to represent a graphical user interface object’s
material map in a procedural and, therefore, resolution

Dec. 21, 2006

independent manner. The method includes receiving values
for each of a plurality of attributes associated with a material
map object, associating a value for each of the plurality of
attributes, and storing the plurality of attributes and their
associated values in a file. The file may be a “flat” file or a
hierarchically-ordered file. The collection of attribute-value
pairs comprise a complete description of the graphical user
interface object’s material map and may be used by a
rendering module to create a visual representation of the
material map at any number of resolutions. In addition,
because material maps in accordance with the invention are
represented procedurally, they may be encrypted to prevent
unauthorized inspection or use.

[0007] Those of ordinary skill in the art will recognize that
methods in accordance with the described invention may be
embodied in programs, program modules or applications
that may be stored in any media that is readable and
executable by a computer system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 shows, in block-diagram format, generation
of recipe files in accordance with one embodiment of the
invention.

[0009] FIG. 2 shows a hierarchical structure for use in a
recipe file in accordance with one embodiment of the
invention.

[0010] FIG. 3 shows, in block-diagram format, use of
recipe files in accordance with one embodiment of the
invention.

[0011] FIG. 4 shows a screen image of a graphical user
interface object design application in accordance with one
embodiment of the invention.

[0012] FIGS. 5A through 5J show screen images of
various graphical object layer attributes and values in accor-
dance with one embodiment of the invention.

[0013] FIGS. 6A through 6E show screen images of
various features of a material map editor window in accor-
dance with one embodiment of the invention.

[0014] FIGS. 7A and 7B show screen images of a light
source editor window in accordance with one embodiment
of the invention.

DETAILED DESCRIPTION

[0015] Methods, devices and systems to describe or cap-
ture the design of graphical user interface objects in a
procedural and, largely resolution independent, manner are
described. The following embodiments of the invention,
described in terms of graphical user interface object design
conforming to the Apple Human Interface Guidelines, are
illustrative only and are not to be considered limiting in any
respect. (The Apple Human Interface Guidelines are avail-
able from Apple Computer, Inc. of Cupertino, Calif..)

[0016] It has been determined that a graphical user inter-
face object may be completely described by a collection of
resolution-independent attributes. The collection of all
attributes for a given object type define that type of object
(e.g., pushbuttons). While the attributes used to define an
object may vary, in whole or in part, from object-type to
object-type, one of ordinary skill in the art will recognize

US 2006/0284878 Al

those attributes needed to completely specify a given object.
For example, while some attributes may be associated with
a number of different graphical interface objects (e.g., those
associated with an object’s location in a display window),
many attributes may change from object to object (e.g.,
buttons have attributes associated with the “button” meta-
phor while check-boxes and slider tracks have attributes
particular to their visual metaphor). Accordingly, the
attributes identified herein are illustrative only and should
not be used to limit the claimed methods, devices and
systems.

[0017] Just as a specific collection of attributes define a
specific type of graphical interface object (e.g., pushbut-
tons), the values associated with each of the specific
attributes define a particular implementation or embodiment
of'the object (e.g., a regular size, deactivated pushbutton). In
accordance with the invention, some attribute-values are
specified independent of the resolution at which the object is
to be displayed while other attribute-values are specified for
two or more resolutions. In general, those attributes associ-
ated with the physical location or geometry of an object may
be associated with a plurality of values—one value for each
specified resolution. Other attributes are associated with
fixed, resolution independent, values (e.g., visual character-
istics such as opacity, color and curvature). By way of
example, consider a pushbutton object whose radius
(attribute “buttonRadius™) is specified for each of five pre-
determined resolutions (e.g., 100, 120, 125, 133.3 and 150
pixels per inch), but whose outline color (attributes “outli-
neRed”, “outlineGreen”, and “outlineBlue”) and opacity
(attribute “buttonOpacity” are fixed and resolution indepen-
dent.

[0018] Thus, in accordance with the invention the collec-
tion of all attribute-values for a specified object completely
define its visual characteristics and, as such, may be used to
drive the graphical generation of the object (for example, by
a rendering engine or operating system module responsible
for rendering images). One benefit of object definitions in
accordance with the invention is that graphical objects are
defined in terms of a collection of resolution independent
attributes. Another benefit of object definitions in accor-
dance with the invention is that each attribute may be
associated with a plurality of values, thereby permitting the
designer to optimize the object’s design for each of a
specified number of resolutions. Still another benefit of
object definitions in accordance with the invention is that if
the actual displayed resolution of the graphical object is
between two of the resolutions specified by the designer, the
rendering engine may interpolate between the two values—a
technique that generally provides a significantly improved
display over prior art up-sampling or down-sampling tech-
niques.

[0019] In accordance with the invention, a graphical user
interface object’s design is specified by a collection of
attribute-value pairs that are retained or stored in a file,
hereinafter referred to as a “recipe” file. In one embodiment,
the recipe file may be a “flat” file consisting of sequential
listing of attribute-value pairs. In another embodiment, the
recipe file may be a hierarchically ordered file representing
an inverted tree, where the root of the tree identifies the type
of graphical object (e.g., a pushbutton, a check-box or a
slider track) and the first level below the root identifies
categories associated with the object (e.g., size, color and

Dec. 21, 2006

state). In one particular embodiment, hierarchically ordered
recipe files are stored as extensible Markup Language
(“XML” files. Attributes and their values are then associated
with each node. In this way, every aspect of a graphical user
interface object may be systematically identified and
recorded in the recipe file in a manner that is wholly
independent from the method used to physically draw (ren-
der) the image on a computer display device.

[0020] Methods, devices and systems in accordance with
the invention may be described in terms of two phases. In a
first phase, recipe files are generated. In a second phase the
recipe files are used to generate visual representations of the
graphical user interface object for one or more applications
at substantially any resolution.

[0021] Referring to FIG. 1, phase 1100 is typically per-
formed by designer 105 interacting with GUI design appli-
cation 110 to generate one or more recipe files 115 for
application 120. As noted above, recipe file(s) 115 may be
organized in a hierarchical manner. FIG. 2 shows hierarchy
200 that has been found useful in the design of graphical
user interface objects in accordance with the invention. As
illustrated, root node 205 identifies the object type (e.g.,
pushbutton). Subordinate to root node 205 are nodes repre-
senting the relative size of the displayed object: Regular 210,
Small 215 and Mini 220. It will be recognized that the sizes
represented by nodes 210, 215 and 220 refer to the relative
physical sizes of the displayed object and do not relate to the
resolution at which such objects are displayed. Subordinate
to the size nodes are “color” nodes, representing the fact that
each (sub-) type of object may be associated with similar or
separate and distinct color characteristics. Subordinate to the
color nodes are states that each version of the object may
assume, where a state is defined by the collection of
attribute-value pairs associated with that (sub-) type of
object. Thus, each node in the tree (root node 205 included)
has a set of attribute-value pairs associated with it. In one
embodiment, the root is fully populated—it always contains
all attribute-value pairs needed to define the object. In this
embodiment, each subordinate node only contains attribute-
value pairs that serve to override the inherited attribute
values of their parent node. For example, “Regular” node
210 may only possess size-based attributes (and their asso-
ciated values), while Color-A node subordinate to node 210
may only serve to override the object’s material map
attribute-value (the main color of the object) and also
perhaps the outline color attribute values.

[0022] Referring to FIG. 3, phase 2300 is typically per-
formed when user 305 interacts with application 120 in such
a manner as to require display of the graphical user object
designed in accordance with phase 1100. In one embodi-
ment when this occurs, application 120 transmits recipe file
115 to rendering engine 310 which returns bitmap 315
which, ultimately, is presented to user 305 via display unit
320. In another embodiment, application 120 may extract
the necessary information (in the form of attribute-value
pairs) form recipe file 115 and transmit those to rendering
engine 310. In still another embodiment, application 120
may indicate to rendering engine 310 where the recipe file(s)
are located. One of ordinary skill will recognize that ren-
dering engine 310 may be a stand-alone component or
module directly accessible by applications or, alternatively,
may be but one module of a larger graphical processing
framework supported by the underlying operating system.

US 2006/0284878 Al

One such modular or “framework™ approach is described in
the commonly owned and co-pending patent application
entitled “System for Optimizing Graphics Operations™ by
John Harper, Ralph Brunner, Peter Graffagnino, and Mark
Zimmer, Ser. No. 10/825,694, incorporated herein by refer-
ence in its entirety.

[0023] Referring to FIG. 4, in one embodiment a GUI
designer may use interface object design application 400 to
design, for example, a pushbutton object. lllustrative design
application 400 includes browser region 405, resolution
display region 410, expanded bit display region 415, object
shape region 420 and user interface construction region 425.

[0024] Browser region 405 permits the selected display of
various aspects of an object’s design. In particular, region
405 provides a graphical representation of a recipe file’s
hierarchical structure in an Apple standard “Finder” format:
the left-most pane identifies the recipe file’s root (which, in
turn, identifies the type of object—a pushbutton); the middle
pane identifies categories of pushbuttons (e.g., inactive,
mini, pressed, pulsed, regular and small). Subsequent panes
display subcategories associated with a selected category.
For example, disclosure triangles 430 indicate that pushbut-
ton categories mini, pressed, pulsed, regular and small have
additional aspects—the details of which are displayed in the
right-most (and possibly subsequent) panes when one of
these categories is selected.

[0025] Resolution display region 410 identifies one or
more resolutions for which the object is being designed. As
shown, the designer has specified that at least some attribute
values for a pushbutton are specified for resolutions of 100,
120, 125, 133.3 and 150 pixels per inch. As noted above, not
all attribute values are specified for each of these resolutions,
only those that the designer determines are significant to the
object’s display. [llustrative attribute-value pairs for a push-
button object and a scrollbar object, including those
attributes having multiple values, are shown in Table 1
below. (It will be recognized that the objects shown in region
410 are not actually displayed at the indicated resolution, but
are instead “simulations” of how the object would appear at
those resolutions.)

[0026] Expanded bit display region 415 shows an
expanded representation of the selected resolution image. In
the illustrated example of FIG. 4, region 415 shows the 8x
pixel-zoomed representation of the 100 pixel per inch push-

Dec. 21, 2006

button. Region 415 may be used, for example, to visually
inspect the quality of the user interface object rendering or
to compare the user interface object rendering with another
pixel-zoomed rendering displayed in an image-editing appli-
cation.

[0027] Object shape region 420 permits the designer to
select, view and specify attribute values associated with a
particular shape of the object being designed. For example,
in the illustrated embodiment a pushbutton’s shape may be
any one of the shapes identified by shape buttons 435:
Round, Lozenge (“Lozen . . .), Round Rectangle (“Round
..., odd (“Scroll bar cap odd end”) or custom. Immedi-
ately beneath shape buttons 435, area 440 shows specific
attributes associated with the selected shape and, through
controls such as slider 445, text box 450, radio button 455
or color well 460 permits the designer to change the value
associated with those attributes.

[0028] User interface construction region 425 serves as the
primary interface for viewing and specifying attribute values
associated with an object’s various visual characteristics or
layers. In the embodiment of FIG. 4, for example, a push-
button may be comprised of Button, Inlay, Outside Shadow,
Inside Shadow, Inside Coloring, Outline, Highlight, Figure,
Master and Template Match layers. Each layer may be
individually selected (noted by a check box alongside the
layer’s title) and each layer’s respective attributes (and
means for setting their value) may be individually disclosed
through activation of their disclosure triangles (the dark
triangle to the immediate left of each layer title’s check box),
see FIGS. 5A through 5J.

[0029] Thus, in accordance with the invention a graphical
user interface object may be completely defined by a col-
lection of attribute-value pairs that may be used by a
rendering engine (or similar module) to display the object.
Further, one or more attributes may have two or more values,
wherein each value is associated with a specific display
resolution. This latter feature permits a designer to uniquely
and specifically optimize a single design for multiple reso-
Iutions with the added benefit of providing sufficient infor-
mation for interpolation (generally performed by the ren-
dering engine) should the actual resolution be different from
any of the specified resolutions. By way of example only,
Table 1 comprises a listing of attributes and their associated
values for a pushbutton object and a scrollbar object.

TABLE 1

Attribute

Illustrative Attribute-Value Pairs

Pushbutton Value Scrollbar Value

buttonCenterX [1]

48/100, 48/133.333,
47.5/150

48/100, 48.5/120, 48/125,
48.5/133.333, 48.5/150

buttonCenterY [1]

buttonCurvature
buttonMaterialAngle [2]
buttonMaterialBlur [2]
buttonMaterialBright [2]
buttonMaterialChoke [2]
buttonMaterialContr [2]
buttonMaterialEdge [2]
buttonMaterialFlat [2]

buttonMaterialName [2], [3]

48/100, 48/120, 48.5/125,
48.5/133.333, 48/150
0.7071

0

[aNeNeN =l

clearmap

48/100, 48.5/120, 48/125,
48.5/133.333, 48.5/150
0.7071

0

[aNeNeN =l

aquamaterial

US 2006/0284878 Al

4
TABLE 1-continued
Illustrative Attribute-Value Pairs
Attribute Pushbutton Value Scrollbar Value
buttonMaterialPull [2] 0 0
buttonMaxX 55 217
buttonMaxy¥ 60 213
buttonMinX 23 185
buttonMinY 36 189
buttonOffsetX 0 0
buttonOffsetY 0 0
buttonOpacity 0.868217 1
buttonPoint1X [1] 43/100, 42/120, 41.5/125, 189
41.5/133.333, 40/150
buttonPoint1Y [1] 48/100, 48/120, 48.5/125, 201
48.5/133.333, 48/150
buttonPoint2X [1] 53/100, 54/120, 54.5/125, 213
54.5/133.333, 55/150
buttonPoint2Y [1] 48/100, 48/120, 48.5/125, 201
48.5/133.333, 48/150
buttonRadius [1] 10.5/100, 13/125, 7.5/100, 9/120, 9.5/125,
14/133.333, 15.5/150 11/150
buttonRoundness 0.5 0.5
buttonType 1 0
figureBlendMode 0 0
figureBlue 0 0
figureFillWithColor 0 0
figureGreen 0 0
figureName [3] mixed figure
figureOpacity 1 1
figureRed 0 0
figureSize 0.5 0.5
figureXPosition 0 0
figureYPosition 0 0
highlightMaterial Angle [2] 0 0
highlightMaterialBlur [2] 41.509434 0
highlightMaterialBright [2] -0.245283 0
highlightMaterialChoke [2] 0.532075 1
highlightMaterialContr [2] 0.433962 0
highlightMaterialEdge [2] 0.481132 0
highlightMaterialFlat [2] -0.226415 0
highlightMaterialName [2] glasshighlightmaterial highlightmaterial
highlightMaterialPull [2] -0.057/100, -0.038/120, 0
-0.075/125, -0.075/150
highlightOpacity 0.279683 1
inlayMaterialAngle [2] 0 0
inlayMaterialBlur [2] 0 0
inlayMaterialBright [2] 0 0
inlayMaterialChoke [2] 1 1
inlayMaterialContr [2] 0 0
inlayMaterialEdge [2] 0 0
inlayMaterialFlat [2] 0 0
inlayMaterialName [2], [3] inlaymaterial inlaymaterial
inlayMaterialPull [2] 0 0

inlayMaxRadius [1]

inlayOpacity

inlayThickness
insideColoringBlue
insideColoringGreen
insideColoringOpacity
insideColoringRed
insideShadowBlue
insideShadowBlurRadius [1]

insideShadowGreen
insideShadowOffsetX
insideShadowOffsetY [1]

insideShadowOpacity
insideShadowRed
masterOpacity
oddDirection
outlineBlue
outlineFade
outlineFadeAngle

12.757/100, 15.795/125,
17.01/133.333, 18.833/150
1

0.43

0.386252

0.336153

0.1

0.705882

0

1.5/100, 1.857/125,
2/133.333, 2.214/150
0

-0

0.75/100, 0.929/125,
1/133.333, 1.107/150
0.60686

0

0.744186

0

0.968326

1

0

9.133/100, 10.935/120,
11.543/125, 13.365/150
1

0.43

0

0

0.1

0

0

1.072/100, 1.286/120,
1.358/125, 1.572/150
0

0

0.536/100, 0.643/120,
0.679/125, 0.786/150

1

OO0 OO

Dec. 21, 2006

US 2006/0284878 Al

TABLE 1-continued
Illustrative Attribute-Value Pairs
Attribute Pushbutton Value Scrollbar Value

outlineFadeWidth [1]

outlineGreen
outlineMaxRadius [1]

outlineOpacity
outlineRed
outlineThickness [1]

outsideShadowBlue
outsideShadowBlurRadius
outsideShadowGreen
outsideShadowOffsetX
outsideShadowOffsetY
outsideShadowOpacity
outsideShadowRed
outsideShadowScale
roundRectHorizontal
roundRectPointerDirection
roundRectPointerShape
roundRectPointiness
showButton

showFigure
showHighlight

showInlay
showlInsideColoring
showInsideShadow
showOutline
showOutlineShadow
templateMatchBottom [1]

templateMatchChop [1]
templateMatchHoriz [1]

templateMatchLeft [1]
templateMatchRight [1]
templateMatchTop [1]
templateMatchVert
undulationAmount
undulationBlue
undulationGreen

undulationPeriod [1]

undulationRed

31.78/100, 39.346/125,
42.373/133.333, 46.913/150
0.176788

10.5/100, 13/125,
14/133.333, 15.5/150
0.601583

0.242527

0.175/100, 0.144/120,
0.139/125, 0.129/133.333,
0.116/150

0

0.66

0

-0

1.503958

0.601583

<

570796

O O O O = R R s OO =

0
7.308/100, 9.048/125,
9.744/133.333, 10.788/150
1

12.348/100, 15.288/125,
16.464/133.333, 18.228/150
6.552/100, 8.112/125,
8.736/133.333, 9.672/150
6.3/100, 7.8/125,
8.4/133.333, 9.3/150
3.024/100, 3.744/125,
4.032/133.333, 4.464/150

0

0
0

0

22/100, 27/125, 28/133.333,
33/150

0

1/100, 1.2/120, 1.267/125,
1.467/150

0

7.5/100, 9/120, 9.5/125,
11/150

0.4

0

0.267/100, 0.222/120,
0.211/125, 0.2/133.333,
0.182/150

0

1.07175

0

570796

O O O O = O FH = O O~ /O oo

0
7.5/100, 9/120, 9.5/125,
11/150

0

7.5/100, 9/120, 9.5/125,
11/150

7.5/100, 9/120, 9.5/125,
11/150

7.5/100, 9/120, 9.5/125,
11/150

7.5/100, 9/120, 9.5/125,
11/150

7.5/100, 9/120, 9.5/125,
11/150

0

0

0

16

[1] The notation W/100, X/125, Y/133.333 and Z/150 indicates a value W should be used

for a resolution of 100 pixels per inch, and so forth.

[2] Attributes whose values are set through material maps (i.e., button material map, high-

light material map and inlay material map).

[3] Represents a file name. For example, an extension is added (e.g., “.png” for image files

or “.pdf” for vector line art files).

Dec. 21, 2006

US 2006/0284878 Al

[0030] In a current embodiment, graphical user interface
objects identified in Table 2 may be defined/specified using
the attributes (left-hand column) identified in Table 1. It will
also be recognized that while many of the attributes above
are specified by values in units of pixels, in other embodi-
ments attribute values may be expressed in terms of a
relative factor to a predetermined size factor.

TABLE 2

Illustrative Graphical Interface Objects

Help Button (regular,
small, mini)

Round Button (regular,
small)

Square Bevel Button
(regular, small, mini)
Metal Button (regular,
small, mini)

Window Title Bar
Controls (regular, small,
mini)

Arrow Pop-Up Button
(regular, small, mini)
Combo Button (regular,
small, mini)

Check Box (regular,
small, mini)

Scroll Bar Track
(regular, small)

Scroll Bar Caps
(regular, small)
Circular Slider Thumb
(regular, small, mini)
Rectangular Text Field
(regular, small, mini)
Tabs (north, east,
south, west orientations)
Asynchronous Progress

Back Button (regular, small)

Push Button (regular, small, mini)

Rounded Bevel Button (regular, small, mini)
Segment Control (regular, small, mini)

Disclosure Button (regular, small, mini)

Pop-Up Button (regular, small, mini)
Pulldown Button (regular, small, mini)

Radio Button (regular, small, mini)

Scroll Bar Thumb (regular, small)

Slider Track (regular, small, mini)

Pointed Slider Thumb (north, east, south, west
orientations) (regular, small, mini)

Round Text Field (regular, small, mini)

Determinate Progress Bar (regular, small)

iDisk Synch Progress Indicator

Indicator
Pane Splitter Drawer
List Box Metal Window Shaping

[0031] To create a graphical user interface object, the body
color of the object (for each point on the object) and the
anti-aliased visibility mask of the object are needed. The
body color of an object may be obtained by using a three-
dimensional representation of the object, or by creating a
virtual representation of the object that defines the surface
normal for each pixel on the object. Once a unit-length
surface normal vector is computed at a point p, the x and y
coordinate values of this vector may be used to compute the
apparent color of the object at point p by looking up a color
from the object’s relevant material map. (One of ordinary
skill in the art will recognize that the term “material map” is
also referred to as “environmental map,”‘reflection map”
and “sphere map.”) If the map is n pixels high and n pixels
wide (this is done because a shaded sphere is inscribed in the
map), one can address the material map at the two-dimen-
sional location given by:

((x-i—zl)n’ (y-i—zl)n] EQ. 1

The color of the material map at this location may be used
as the color for the object at point p. To get an accurate
result, it is typical for a material map to be much larger (for

Dec. 21, 2006

example, 256x256 pixels or larger) than the graphical user
interface object being rendered.

[0032] This same technique may be used in conjunction
with a material map that possesses alpha (transparency)
information. Once a color (with alpha) is looked up from a
transparency material map, a highlight may be overlaid onto
the object by using the alpha as a coverage fraction for the
color from the map. Standard compositing methods may be
used to accomplish this overlay operation.

[0033] An object’s anti-aliased visibility mask may be
obtained by computing a field that provides distance from
the edge of the object. This field can be evaluated using a
procedural description of the object. For example, a lozenge
may be defined as the set of points at distance r or less from
a finite non-zero-length line segment from point (plx, ply)
to point (p2x, p2y). The distance d from the aforementioned
line segment may be calculated at point (px, py) by a
function such as that provided in Table 3 below.

TABLE 3

Illustrative Field (Distance) Calculation for a Lozenge Object

Let vx, vy, length, wx, wy, and
d be floating point values, then

d = [(wx x vy) - (wy x V)
determine distance from line if
(v x WX) + (vy x wy)) > 0

VX =plx - p2x that is, if past point pl
vy =ply - p2y
length = v/ (vx)2 + (vy)? d =+ (wx)? + (wy)?
use distance from pl

VX WX = pX — p2xX
VX= Tength Wy = py - p2y

vy if (v x wy) - (vy x wy)) <0
= length

WX = px — plx that is, if past point p2

d =y (wx? + (wy)?

use distance from p2

wy =py - ply

Continued in next column (—)

[0034] Given the distance function d defined above (see
Table 1), an anti-aliased transparency value (mask) for the
graphical user interface object may be computed as shown
in Table 4. The same distance field may be used to construct
the outline of the user interface object.

TABLE 4

Illustrative Transparency Value (Mask) Calculation

mask = r—d

if (mask > 1.0)mask

=1.0

if (mask < 0.0)
mask = 0.0

[0035] In another embodiment, material maps may be
represented in procedural fashion. In this embodiment the
interface object design application 400 (see FIG. 4) may be
enhanced to provide an interface through which material
maps may be defined and, subsequently, represented in a
procedural fashion. In contrast, prior art material maps for
use in user interface elements used images as described
above.

US 2006/0284878 Al

[0036] Referring to FIG. 6A, interface object design
application 400 may be enhanced to provide material map
editor window 600 that includes material map display region
605, material map control region 610, light property region
615 and light list region 620.

[0037] Material map display region 605 graphically dis-
plays the currently selected material map and may also
display individual light sources associated with the dis-
played material map. In the embodiment of FIG. 6A, light
sources may be created by “clicking” on the material map’s
graphical display where a light handle does not already exist
(in FIG. 6A, light handles are represented by circles in
display region 605). In one embodiment, when a new light
source is created in this way, a duplicate of the currently
selected light source is created and placed at the location
which was clicked. In similar fashion, a light source may be
moved by selecting (e.g., “clicking”) and dragging the light
handles to the desired position. Further, a user may place a
light source “behind” the material map by placing the light
source off the material map’s surfaces such as shown with
light handles 625 in FIG. 6A. Similarly, a light source may
be selected by “clicking” on it (see discussion below).

[0038] Material map control region 610 permits the user to
control the overall presentation of a material map and, in
addition, selection and storage of the material map. For
example, the material map may be displayed having a
checkerboard background by selecting the “Over Checker-
board” check-box and light handles may be displayed by
selecting the “Display Light Handles” check-box. Referring
to FIG. 6B, the “Show” drop-down menu allows a user to
show the material map to be built (by selecting the “Mate-
rial” item) or a flat material map that is an image in
accordance with prior art material maps (by selecting the
“Original” item). Referring to FIG. 6C, the “Files” drop-
down menu permits the user to open a previously stored
procedural representation of a material map (i.e., a Material
Recipe file), save the displayed material map as a material
recipe file, open an original graphical material map (i.e., an
image) or save the displayed material map as an image (i.e.,
to generate a graphical material map).

[0039] Light property list region 615 permits the user to
set various properties of a selected light source. For
example, if light source 630 is selected (see FIG. 6A), its
properties would appear in region 615. Through slider
controls of the type generally known in the art properties of
the selected light source may be adjusted. For example, the
power slider may be used to set whether the light source is
diffuse (a lower value) or specular (a higher value). For
image and image masked light sources (see discussion
below): the image scale slider may be used to set the size of
the image that is reflected off the material map’s surface; the
image angle slider may be used to control the rotation of the
reflected image about the point of contact between the image
and the material map’s surface; and the image X and Y offset
sliders may be used to control the point at which the
reflected image contacts the material map’s surface.

[0040] In addition, drop-down menus may be used to set
the “Type” and “Blend Mode” for the selected light source.
Referring to FIG. 6D, in the illustrative embodiment a light
source’s “type” may be selected as colored, image, image
masked or reflection map. A “colored” light source is a
colored light with a circular distribution (when viewed

Dec. 21, 2006

straight-on) and is defined such that it can describe a diffuse
(e.g., a power value of 0) or specular (e.g., a power value of
64) light source. An “image” light source describes an
image, potentially masked by using an alpha transparency
mask, that is placed tangent to the material map’s surface at
the location of its associated light handle. An “image
masked” light source is like an “image” light source but is
additionally masked by the same distribution as defined by
a colored light source. A “reflection map” light source is a
whole light ball image that is placed on top of the material
map’s surface and which may be rotated by “image angle”
sliders. It is noted that for a reflection map type of light
source, of all the image-applicable sliders, only the image
angle slider is applicable. In a similar fashion, the “Blend
Mode” of the selected light source may be set through the
“Blend Mode” drop-down menu as shown in FIG. 6E. Since
each of the blend modes identified in FIG. 6E are generally
known in the art, they will not be described further.

[0041] Light list region 620 lists all light sources associ-
ated with the displayed material map. In addition, region 620
permits the user to activate each light source (e.g., through
“On” check-boxes) and to set the “Brightness” of each light
source (e.g., through slider-type controls) individually. In
the illustrated embodiment, individual entries in the list of
light sources may be selected (e.g., by “clicking” on its
“Name” and dragged up or down in the list to adjust its
display priority. In one embodiment, the first light source in
the list has the front-most in priority while the last light
source in the list has the back-most priority. In this way, light
sources may be treated like “layers” that are composited on
top of each other using blend modes. This manner of
layering objects is well-known in the art.

[0042] Referring to FIG. 7A, in one embodiment, image,
image masked or reflection map lights may be procedurally
defined through light maker window 700. As shown, light
maker window 700 includes light image display region 705,
light image primitive region 710, and light image focus
region 715. As in prior editing windows, light image display
region 705 shows a graphical representation of a light source
that is defined in accordance with the attribute or charac-
teristic values set (and shown) in regions 710 and 715. For
illustrative purposes, a circular type light image is shown in
FIG. 7A. Referring to FIG. 7B and light image primitive
region 710, other types of light sources that may be defined
procedurally in accordance with the invention include rect-
angle shapes (“Rectangle”), horizontal lines (“Lines”) and
rectangles (i.e., a pane split horizontally or vertically, or
both). In addition, an existing image file image may be
imported by selecting the “File” item in FIG. 7B.

[0043] Referring again to FIG. 7A, light image primitive
region 710 includes five (5) slider controls that may be used
to adjust or set the value corresponding to the light source’s
radius, width, height, spacing and thickness characteristics
or attributes. In the illustrative embodiment, the Radius
slider applies to the Circle image type, and controls its size.
The Width and Height sliders apply to the Rectangle, Lines,
and Rectangles image types and control their size (bounds).
The Spacing slider applies to the Lines and Rectangles
image types, and control the distance in between lines or
between sub-panes. The Thickness slider applies to the
Lines and Rectangles image type, and controls the amount
of coverage for the lines or sub-panes. For example, a value
of 50% would make the lines the same thickness as the

US 2006/0284878 Al

distance between them. Similarly, slider controls may be
used in light image focus region 715 to set the amount of
blur applied to the image. The Upper and Lower sliders
control the amount of blur, in pixels, applied to the top and
bottom of the image primitive. In the example illustrated in
FIG. 7A, it applies to the top of the circle and the bottom of
the circle, respectively.

[0044] Once a material map has been defined in material
map editor window 600, the user may save the map in a
procedural file by selecting the “Save Material Recipe” item
from the “Files” drop-down menu (see FIG. 6C). In one
embodiment, each property identified through light property
region 615 and light list region 620 is used as an attribute tag
and the properties associated value (e.g., Power value 1.0
and 1 mg. Scale value of 100 as shown in FIG. 6A) as a
value for that property. This is in keeping with the attribute-
value description illustrated in Table 1 above. As previously
noted, attribute value pairs may be stored in a flat file or a
hierarchically-ordered file such as an XML file.

[0045] Referring again to FIG. 6A, when a new material
map is to be generated (such as when a material map editor
window 600 is initially opened), default values may be
assigned to one or more of the material map’s properties. For
instance, a single light source may be instantiated with a
specified collection of default property values. By way of
example only, a default light source may be “Colored” (see
FIG. 6D), have a “Normal” blend mode (see FIG. 6E), a
“Power” value of 1, be “on” and have a brightness of 50%.

[0046] 1t will be recognized by those of ordinary skill in
the art that the information (i.e., attribute or properties and
their associated values) retained in a material map’s recipe
file may be used to generate a graphical representation of the
material map. Unlike prior art user interface material maps,
recipe files in accordance with the invention may be used to
dynamically generate the images which can reduce the
amount of memory needed to store a user interface and
substantially reduce the time required to create a specific
user interface element. In addition, because material maps in
accordance with the invention are represented in a proce-
dural manner they are resolution independent. This is in
sharp contrast with prior art material maps that rely on an
image having a set or fixed resolution. Thus, a single
(procedurally defined) material map may be used for all
resolutions rather than having to have multiple material
maps—each at a display resolution. Further, because mate-
rial maps in accordance with the invention are procedural in
nature, they may be encrypted to protect their content. (That
is, the text recipe file is encrypted.)

[0047] Various changes or modifications in the foregoing
description may be made without departing from the concept
of the invention. For example, attributes other than, or in
addition to, those identified in Table 1 and in FIG. 6 may be
used to specify an object. In addition, hierarchical storage
means other than an XML file may be used to store an
object’s procedural specification.

[0048] 1t will be recognized that methods to represent and
render a graphical user interface object in accordance with
this description may be performed by a programmable
control device executing instructions organized into one or
more program modules. A programmable control device
may be a single computer processor, a special purpose
processor (e.g., a digital signal processor, a graphics pro-

Dec. 21, 2006

cessing unit or a programmable graphics processing unit), a
plurality of processors coupled by a communications link or
a custom designed state machine. Custom designed state
machines may be embodied in a hardware device such as an
integrated circuit including, but not limited to, application
specific integrated circuits (“ASICs”) or field programmable
gate array (“FPGAs”). Storage devices suitable for tangibly
embodying program instructions include, but are not limited
to: magnetic disks (fixed, floppy, and removable) and tape;
optical media such as CD-ROMs and digital video disks
(“DVDs”); and semiconductor memory devices such as
Electrically Programmable Read-Only Memory
(“EPROM”), Electrically Erasable Programmable Read-
Only Memory (“EEPROM”), Programmable Gate Arrays
and flash devices.

[0049] Accordingly, the preceding descriptions were pre-
sented to enable any person skilled in the art to make and use
the invention as claimed and were provided in the context of
the particular examples discussed above, variations of which
will be readily apparent to those skilled in the art. Accord-
ingly, the claims appended hereto are not intended to be
limited by the disclosed embodiments, but are to be
accorded their widest scope consistent with the principles
and features disclosed herein.

1. A method to represent a material map for a graphical
user interface element, comprising:

receiving a plurality of values for a material map, the
material map for use with a graphical user interface
element;

associating each received value with a display attribute,
the display attributes sufficiently complete to permit the
material map to be rendered; and

storing the plurality of display attributes and their asso-

ciated values in a file.

2. The method of claim 1, wherein the act of associating
comprises assigning a default value to one or more of the
plurality of display attributes.

3. The method of claim 1, further comprising providing
the file to a rendering means for generating a visual repre-
sentation of the graphical user interface object’s material
map.

4. The method of claim 1, wherein each value associated
with each display attribute is independent of a display
resolution of the graphical user interface object’s material
map.

5. The method of claim 1, wherein the act of associating
comprises a user explicitly associating a value with one or
more of the display attributes.

6. The method of claim 1, wherein the act of associating
comprises automatically associating a default value to one or
more of the display attributes.

7. The method of claim 1, wherein the act of storing
comprises storing the display attributes and their associated
values in a file.

8. The method of claim 7, wherein the act of storing
display attributes and their associated values in a file,
comprises storing display attributes and their associated
values in a flat file.

9. The method of claim 7, wherein the act of storing
display attributes and their associated values in a file,
comprises storing display attributes and their associated
values in a hierarchically-ordered file.

US 2006/0284878 Al

10. The method of claim 9, wherein the act of storing
display attributes and their associated values in a hierarchi-
cally-ordered file comprises storing display attributes and
their associated values in an extensible Markup Language
file.

11. The method of claim 1, wherein the act of receiving
values comprises receiving values through a graphical user
interface design application.

12. A graphical user interface object material map ren-
dering method, comprising:

receiving a graphical user interface object material map
recipe file;

extracting a plurality of values from the file, wherein each
value is associated with a display attribute for the
graphical user interface object material map; and

rendering the graphical user interface object material map

based on the extracted plurality of values.

13. The method of claim 12, wherein the act of receiving
comprises receiving a hierarchically-ordered graphical user
interface object material map recipe file.

14. The method of claim 13, wherein the act receiving a
hierarchically-ordered graphical user interface object mate-
rial map recipe file comprises receiving an extensible
Markup Language file.

15. The method of claim 12, wherein the act of rendering
is performed by an operating system level module.

Dec. 21, 2006

16. A program storage device, readable by a program-
mable control device, comprising instructions stored thereon
for causing the programmable control device to:

receive a plurality of values for a material map, the
material map for use with a graphical user interface
element;

associate each received value with a display attribute, the
display attributes sufficiently complete to permit the
material map to be rendered; and

store the plurality of display attributes and their associated

values in a file.

17. The program storage device of claim 16, wherein the
instructions to receive comprise instruction to receive a flat
file.

18. The program storage device of claim 16, wherein the
instructions to receive comprise instruction to receive a
hierarchically-ordered file.

19. The program storage device of claim 18, wherein the
instructions to receive a hierarchically-ordered file comprise
instruction to receive an extensible Markup Language file.

20. The program storage device of claim 12, wherein the
instructions further comprise instructions to render the
graphical user interface object material map.

#* #* #* #* #*

